
等式的性质说课稿
作为一位杰出的教职工,常常要写一份优秀的说课稿,说课稿有助于提高教师理论素养和驾驭教材的能力。那么应当如何写说课稿呢?下面是小编为大家整理的等式的性质说课稿,希望能够帮助到大家。
等式的性质说课稿1一、说教材分析
地位和作用:
教材从对于比较复杂的方程难以用估算求解切入,引出对等式性质的讨论,为后面逐步过渡到用等式的性质讨论方程的解法进行铺垫。学生探究等式的性质过程中所涉及的转化思想、归纳方法是学生研究数学乃至其它学科所必备的思想。
教学目标:
(1)知识与能力:理解并能用语言表述等式的性质,能用等式的性质解决问题。
(2)过程与方法:通过观察实验培养学生探索能力、观察能力、概括能力和应用新知的能力,渗透“化归”的思想。
(3)情感与态度:通过实验操作增强师生合作交流的意识。
教学重点:
引导学生探索发现等式的性质,利用等式的性质解决简单问题。
教学难点:
抽象归纳出等式的性质。
教学准备:
天平、导学案及多媒体课件
二、说教学策略与方法分析
有效的数学学习活动不能单纯的依赖模仿与记忆,动手实践、自主探究与合作交流是学生学习数学的重要方式,这也是生本课堂“三学小组”教学模式积极倡导的重要学习方式。在本节课的教学中,我利用学生动手操作、多媒体展示,通过观察法、实验法、合作交流、归纳法等教学方法,引导学生预学——互学——评学,遵循由浅入深,由具体到抽象的规律,努力为学生营造一个宽松、民主、和谐的学习环境,让学生们在探索、交流中理解和运用等式的基本性质;
三、说教学流程及设计意图
(一)独立自学
预学:请同学们认真看教材81页第一、二两段内容,结合所学知识回答下列问题;
1、我们把的等式叫方程;用“ ”表示关系的式子叫做等式,可以用表示一般的等式;请举几个等式的例子;
2、能说出方程4x=24,x+1=3的解吗?试一试;
3、79页例1第(2)题我们所列的方程是:能估算出这道方程的解,从而解答这个问题吗?
设计意图:1、2两个问题都来源于教材,比较简单,学生容易解决。第3个问题让学生会感到解决起来有一定的困难,学生对后面即将学习的知识必然引起重视,同时也产生了学好新知再来解决困难的浓厚兴趣,就此引入本节课的课题;
(二)合作互学
动手操作,探究规律:把手中的天平调到平衡状态,在天平两端放置不同的物品,什么时候天平可以平衡?(平衡状态下的天平可以用等式表示)如果在平衡的天平的左端放入一个砝码,天平还平衡吗?怎样做天平才能平衡呢?如果把放入左边的砝码拿掉,又有什么发现呢?
1、通过观察,可以发现什么规律?
规律:
2、归纳:
等式的性质1
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
【继续探究】:如果在平衡的天平的左端放入与左端一样的砝码若干个,怎样才能使天平平衡呢?如果把放入天平左端的砝码拿掉,又有什么发现呢?
1、发现的规律是:
2、类比等式的性质1,可以归纳:
等式的性质2
用数学符号语言表示为:
能举例验证吗?(可举具体数字的例子验证)
3、【知识延伸】等式除了以上两条性质外,还有其他的一些性质。
(1)对称性:等式的左、右两边交换位置,所得的结果仍是等式。即如果a=b, a=b那么b=a 。
(2)传递性:如果a=b,且b=c,那么a=c。
设计意图:我设计了探究天平平衡规律实验的教学环节,让学生以小组合作的形式讨论实验步骤并动手操作,在增减重物的过程中认识、归纳天平的平衡规律,让学生汇报实验步骤与结论,并用数字等式的形式表现实验结果,进而共同归纳出等式的性质1.在探究等式的性质2时,我为了加深学生印象,同时也为了培养学生数学思维的发展,提出问题:如果将性质1中的“加”改为“乘”、“减”改为“除以”,结果还会相等吗?让学生大胆猜想,并通过天平实验和数字等式实例变形进行验证,再得出等式的性质2.按照这样的设计,学生必然会充分地参与到探究等式性质的活动中来,既培养了学生团结协作、动手操作、勇于实践的探索精神,又增强了设计实验、类比猜想、归纳建模的学习能力,同时获得的知识也必然印象更深。
(三)展示竞学
1、若X=Y,则下列等式是否成立,若成立,请指明依据等式的哪条性质?若不成立,请说明理由?
(1)X+ 5=Y+ 5(2)X-= Y-
2、如果3x=2x+5,那么3x+______=5;根据等式性质
变式1、如果a-3=b-2,那么a+1=_________;根据等式性质
变式2、从3x+2=3y+2中,能不能得到x=y,依据是什么?
设计意图:这几道练习题主要是等式两条性质的基本运用,练习题的设计我遵循了“低起点,小台阶,循序渐进”的要求,符合七年级学生接受知识的年龄特点,培养了学生运用所学新知解决问题的习惯,使学生能享受到运用新知可以解决新的数学问题的愉悦感。
(四)精讲导学
精讲例题:阅读理解题:下面是小明将等式3x-2=2x-2变形的过程。
设计意图:通过精讲展示竞学部分学生可能有疑惑或解决不了的问题,让学生加深理解等式两条性质运用的条件,设计的变式训练由易到难,目的是巩固基础、提高能力;另外还有一个阅读理解题,目的是让学生在发现错误,并纠正错误的过程中,可以提醒自己在运用时不要犯这样的错误,并加深对等式的两条性质的理解;
(五)小结评学
设计意图:我设计了两个问题:一是你在本节课上有哪些收获?二是你还有哪些疑惑?主要是鼓励学生能畅所欲言,使知识得到深化,能力得到提高;同时通过对学生个人的评价和学习小组的评价,有利于培养学生上课认真听讲,积极思考回答问题,以及荣誉感意识,增强学习数学的自信心;
最后,关注学生的学习体会和感受,提出:通过本节课你学到了什么?
(六)检测固学
1、下列等式的变形中,不正确的是()。
A.若x=y,则x+5=y+5
B.若(a≠0),则x=y
C.若-3x=-3y,则x=y
D.若mx=my,则x=y
2、若,则a=___;若(c2+1)x=2(c2+1),则x=____。
3、填空,使所得结果仍是等式,并说明结果是根据等式的哪一条性质及如何变形得到的?
< ……此处隐藏20366个字……学重难点:重点:不等式概念及其基本性质
难点:不等式基本性质3
教法与学法:
1. 教学理念: “ 人人学有用的数学”
2. 教学方法:观察法、引导发现法、讨论法.
3. 教学手段:多媒体应用教学
4. 学法指导:尝试,猜想,归纳,总结
根据《数学课程标准》的要求,教材和学生的特点,我制定了以下四个教学环节。
下面我将具体的教学过程阐述一下:
一、创设情境,导入新课
上课伊始,我将用一个公园买门票如何才划算的例子导入课题。
世纪公园的票价是:每人5元;一次购票满30张,每张可少收1元。某班有27名团员去世纪公园进行活动。当领队王小华准备好了零钱到售票处买27张票时,爱动脑筋的李敏同学喊住了王小华,提议买30张票。但有的同学不明白,明明我们只有27个人,买30张票,岂不是“浪费”吗?
(此处学生是很容易得出买30张门票需要4X30=120(元), 买27张门票需要5X27=135(元),由于120〈135,所以买30张门票比买27张还要划算。由此建立了一个数与数之间的不等关系式)
紧接着进一步提问:若人数是x时,又当如何买票划算?
二、探求新知,讲授新课
引例列出了数与数之间的不等关系和含有未知量120<5x的不等关系。那么在不等式概念提出之前,先让学生回顾等式的概念,“类比”等式的概念,尝试着去总结归纳出不等式的概念。使学生从一个低起点,通过获得成功的体验和克服困难的经历,增进应用数学的自信心,为下面的学习调动了积极。
接下来我用一组例题来巩固一下对不等式概念的认知,把表示不等量关系的常用关键词提出。
(1)a是负数;
(2)a是非负数;
(3) a与b的和小于5;
(4) x与2的差大于-1;
(5) x的4倍不大于7;
(6) 的一半不小于3
关键词:非负数,非正数,不大于,不小于,不超过,至少
回到引入课题时的门票问题120<5x,我们希望知道X的取植范围,则须学习不等式的性质,通过性质的学习解决X的取植
难点突破:通过上面三组算式,学生已经尝试着归纳出不等式的三条基本性质了。不等式性质3是本节的难点。在不等式性质3用数探讨出以后,换一个角度让学生想一想,是否能在数轴上任取两个点,用相反数的相关知识挖掘一下,乘以或除以一个负数时,任意两个数比较是否性质3都成立。通过“数形结合”的思想,使数的取值从特殊化到一般化,从对具体数的感知完成到字母代替数的升华。让学生用实例对一些数学猜想作出检验,从而增加猜想的可信程度。同时,让学生尝试从不同角度寻求解决问题的方法并能有效地解决问题。
反馈练习:用一个小练习巩固三条性质。
如果a>b,那么
(1) a-3 b-3 (2) 2a 2b (3) -3a -3b
提出疑问,我们讨论性质2,3是好象遗忘了一个数0。
引出让学生归纳,等式与不等式的区别与联系
三、拓展训练
根据不等式基本性质,将下列不等式化为“”的形式
(1)x-1<3 (2)6x<5x-2 (3)x/3<5 -4x="">3
[设计意图:类比等式的基本性质,研究不等式的性质,让学生体会数学思想
方法中类比思想的应用,并训练学生从类比到猜想到验证的研究问题的方法,
让学生在合作交流中完成任务,体会合作学习的乐趣。]
问题4:比较不等式基本性质与等式基本性质的异同?(学生小组合作交流。)
[设计意图:比较不等式基本性质与等式基本性质的异同,这样不仅有利于学生认识不等式,而且可以使学生体会知识之间的内在联系,整体上把握知识、发展学生的辨证思维。]
3、尝试练习,应用新知
小黑板出示下列练习
一:孙悟空火眼金睛:
1、如果x+5>4,那么两边都可得x>-1
2、在-7<8的两边都加上9可得。
3、在5>-2的两边都减去6可得。
4、在-3>-4的两边都乘以7可得。
5、在-8<0的两边都除以8可得
二:你来决策:
如果a>b,那么
1、a-3 b-3(不等式性质)
2、2a 2b(不等式性质)
3、-3a -3b(不等式性质)
4、a-b 0(不等式性质)
[设计意图:数学练习是巩固数学知识,形成技能、技巧的重要途径,而机械、呆板的题海战术只能把学生在学习新知识时的热情无情地淹灭。两道练习以别开生面的形式出现,给学生一个充分展示自我的舞台,在情感态度和一般能力方面都得到充分发展,并从中了解数学的价值,增进了对数学的理解。]
出示例题
例1根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:
(1)x-5>-1(2)-2 x>3
(先让学生思考,如何根据不等式的基本性质来进行变形,然后教师书写规范的步骤,并让学生讲解每一步的算理。)
解(1)根据不等式的性质1,两边都加上5得:
x-5+5>-1+5
即x>4
(2)根据不等式的性质3,两边都除以-2得:
即x<-3/2
练习:根据不等式的基本性质,把下列不等式化成x<a或x>a的形式:
(1)3x>5(4)-4 x<3-x
[设计意图:由于新教材中例题较少,学生对于书写格式了解太少,因此教师应该加以规范。]
4、总结反思,获得升华
让学生从知识方面、能力方面、思想方面进行总结。鼓励学生畅所欲言总结对本节课的收获与体会。
[设计意图:让学生通过总结反思,一是进一步引导学生反思自己的学习方式,有利于培养归纳,总结的习惯,让学生自主构建知识体系;二也是为了激起学生感受成功的喜悦,力争用成功蕴育成功,用自信蕴育自信,激励学生以更大的热情投入到以后的学习中去。]
5、布置作业,深化巩固
必做作业:习题11.2第二题推荐作业:课本中的试一试。
[设计意图:这样做的目的在于,让不同层次的学生都有不同程度的提高。]
七、板书设计:
为了能直观地显现知识的脉络,精当的突出教学重点,加深学生对知识的理解和记忆,培养学生思维的连贯性。本着板书的科学性,条理性原则,设计板书如下:
11.2不等式的基本性质 不等式的基本性质 1:如果ab,那么a+c>b+c,a-c>b-c(2)-2 x>3 2:如果a>b,c>0,那么ac>bc 如果a0,那么acb,c<0,那么acbc
文档为doc格式