圆锥体积的说课稿

时间:2025-06-28 21:10:16
圆锥体积的说课稿

圆锥体积的说课稿

作为一名为他人授业解惑的教育工作者,编写说课稿是必不可少的,借助说课稿可以有效提高教学效率。那么优秀的说课稿是什么样的呢?下面是小编帮大家整理的圆锥体积的说课稿,欢迎大家借鉴与参考,希望对大家有所帮助。

圆锥体积的说课稿1

一、说教材

本节课是北师大版义务教育标准实验教科书六年级数学下册第11页—13页的内容,这节课是在学生对长方体,正方体,圆柱体,和圆锥体的特征都有了初步的认识和了解,并在学习了圆柱的体积的基础上进行学习的,这就为本节课的学习奠定了扎实的基础,同时,也为初中阶段进一步学习几何图形知识做了一个良好的铺垫。为了做到有的放矢,我特制定以下学习目标:

1、使学生理解圆锥体积的推导过程,初步掌握圆锥体积的计算公式,并能正确计算圆锥的体积。

2、通过动手推导圆锥体积计算公式的过程,培养学生初步的空间观念和动手操作能力。学习重点是:掌握圆锥体积的计算公式。学习难点是:正确探索出圆锥体积和圆柱体积之间的关系。

二、说教法

本节课我采用的教法是启发式教学法,实验活动法,归纳总结法。教学中,既要充分发挥学生的主体作用,又要调动学生积极主动地参与教学。

三、说学法

动手操作法,观察发现法,自主探究法,合作交流法

四、说教学过程

1、复习导入,引出课题:通过复习圆锥的特征、圆柱的体积计算方法引入新课,为学生学习新知做好铺垫。

2、揭示课题,展示目标。

3、以旧引新,探究新知。

通过回忆圆柱体积计算公式的推导过程,提出问题:圆锥的体积该怎样求呢?能不能也通过已学过的图形来求呢?激起学生探究的欲望。此时我会拿出已经准备好了的等底等高的圆柱形和圆锥形容器,然后提问以下几个问题:这两个容器有什么共同的特征?谁的体积更大?圆柱的体积和圆锥体积之间有没有一定的数量关系?问学生:“你用什么办法验证自己的猜想呢?”这时候,肯定要有一部分聪明的或者已经预习课本的同学会说:“将圆锥形容器装满沙或水,在倒入圆柱形容器,看几次能倒满。”这时候就让同学们以小组为单位,验证他们的猜想。

教师只需要做最总结:圆锥的体积等于和它等底等高的圆柱体积的三分之一。如果用V表示圆锥的体积,S表示底面积,h表示高,那么就能得出圆锥体积的计算公式为:V=1/3Sh(板书,特别的用红颜色粉笔写出等底等高和公式)

4、运用公式,解决问题

通过“算一算”和“试一试”让学生掌握公式的运用。

5、巩固练习,拓展深化,依次练习“练一练”中第1题,第4题和第5题。当然在练习的过程中,要随时关注学生所出现的问题,以便得到及时的解决。

6、质疑问难,总结升华

在此环节中,我会问学生“通过这节课的学习,你们有哪些收获,是怎样推导出圆锥的体积的公式的。

圆锥体积的说课稿2

一.说教材。

圆锥的认识和体积计算是《人教版》内容第十二册4143页的内容。本节

课是在认识了圆柱体的基础上继续学习的内容。学习圆锥可以进一步加强学生对立体图形的认识。为了帮助学生认识圆锥体,理解和掌握圆锥体的体积计算公式,教材是从观察入手,到实践操作,让学生通过操作把抽象的概念具体化、形象化。让圆锥体的有关概念,体积计算公式从实践中认识,然后运用到实际生活中去。

根据教材内容,确定教学目标:

1.通过观察和演示,使学生认识圆锥体,掌握它的特征和体积计算公式,并能根据具体问题灵活应用计算方法。

2.让学生理解圆锥体积公式的推导过程,认识圆柱体和圆锥体之间的关系,渗透辨证思维的方法。

3.通过实际操作,培养学生动脑、动手的能力,让学生养成严谨、仔细的良好习惯。

4.培养学生观察、比较、分析、判断推理的能力,发展学生空间观念,提高学生想象能力和逻辑思维能力。

教学重点难点和关键:

1.重点:(1)认识直圆锥并掌握它的一些特征。(2)圆锥体的体积计算。

2.难点:(1)圆锥体体积计算公式的推导。(2)解答有关直圆锥体实物体

积。

3.关键:要充分应用直观教具和电脑,进行演示和实验,有目的、有步骤地引导学生观察、思考,从而推导出计算公式和有关概念。

二.说教法和学法。

根据教材的内容和学生的年龄特征,我采用以下教法和学法:

1.直观操作,突破难点。

在这节课中,充分运用实物让学生认识直圆锥,通过圆锥体的点,线,面,

认识圆锥体的底和高。发挥学生四人小组的作用,大胆放手让学生动手操作,推导出圆锥的体积计算公式,并懂得圆锥体和圆柱体之间的关系。通过动手操作,让学生用多种感官去感知事物,获取感性知识,使操作与思维紧密结合,加深对直圆锥及体积的认识。

2.运用电脑课件的动感突出重点。

圆锥体的认识是本节课的重点,为了让学生充分地认识圆锥体,把生活中

的锥形物体放在屏幕上(如小麦堆,漏斗等),运用电脑闪动形式认识圆锥体的底面,侧面,顶点,高。认识圆锥体积的大小也是本节的重点和难点内容,为了突出重点,突破难点,着重引导学生去探索等底等高的圆锥体与圆柱体体积之间的关系,充分运用电脑屏幕显示操作推导过程,把静态转化为动态,加深学生对所学知识的直观印象,生动、形象、具体的教学使学生能够由具体到抽象,由感觉到知觉进行顺利的过渡。

3.注意培养学生的发散性思维和创新意识。

创新教育是素质教育的核心,因此在课堂教学中注意培养学生的发散性思

维和创新意识。

在认识圆锥体的过程中,引导学生思考,发现,认识圆锥体的特征。在认识圆锥体的体积的过程中,引导学生积极地去和等底等高的圆柱体的体积进行比较,通过对比、分析、综合、归纳出圆锥体的体积计算公式。学生在充分认识了圆锥体和圆柱体之间的关系的基础上,从不同方面对学生进行练习,启发学生做一些有创新能力的题目,让学生充分发挥自己创造力的空间,培养学生发散性思维能力。

三. 说教学程序设计。

悬念引入。

首先让学生回忆近来学习了什么立体图形(圆柱体),在电脑屏幕上展示圆

柱体和圆锥体的实物,让学生认识圆柱体,说出圆柱体的体积公式,然后提问:屏幕上还有一些什么图形呢?(这样做一方面可以让学生初步感知圆锥体,另一方面既能激发学生的学习兴趣,又能培养学生独立思考的能力。)

探究新知。

1.圆锥的认识。

(1)圆锥的组成。

①面。圆锥有几个面?哪两个面?[教师板书:圆锥有两个面(一个侧

面,一个底面)。]

……此处隐藏23714个字……公式计算圆锥的体积。

(2)培养学生的观察、理解能力、空间观念,应用所学的知识解决实际问题的能力。

(3)使学生在经历中获得成功的体验,体验数学与生活的联系。

2、教学重点:掌握圆锥体积计算公式,能运用体积公式计算圆锥的体积以及解决一些实际问题。

3、教学难点:理解圆柱体积、圆锥体积在等底等高的条件下,体积之间的倍数关系。

4、教具准备:

(1)多媒体课件。

(2)等底等高、等底不等高、等高不等底的圆锥和圆柱若干套,沙、实验报告单;带有刻度的直尺,绳子等。

二、说教法

我国著名教育家叶圣陶先生指出:教是为了用不着教。教学有法,但教无定法、贵在得法。依据新课程标准理念和教材特点以及学生的认知规律,这节课我主要运用以下教学方法。

1、复习引入法。通过复习长方体、正方体、圆柱体的体积计算公式和推导过程帮助学生温故知新,沟通新旧知识间的联系。

2、情景教学法。通过让学生猜测圆柱体积与圆锥体积的关系,诱发学生对猜测进行验证的情景,融知识性与趣味性为一体,以情激情、以情激趣、以情促知。

3、启发分析法。通过对三次实验结果的分析、比较,培养学生问题意识,启迪学生思维,发展学生智力。

并将自主探究的学习方式贯穿于教材的全过程。恰当运用多媒体教学手段增强教学的新颖性,从而激发学生参与学习的积极性,使他们在求知的学习状态中展示个性,体验到学数学用数学的乐趣。

三、说学法

教与学密不可分,教是为了更好的学。教法是学法的导航,学法是教法的缩影。著名教育家陶行知指出:好的先生不是教书,不是教学生,乃是教学生学。鉴于这样的认识,在强调教法的同时,更要注重学法的指导。本节课在学习过程中,我主要指导学生学会以下学习方法:

1、转化迁移的方法。通过复习圆柱体积的推导过程,使学生学会发现、扑捉知识间的内在联系,促进认知水平的形成和新知的内化。

2、比较分析的方法。通过对三次实验结果的比较、分析,拓展学生的视野,防止知识混淆,提高分析问题和解决问题的能力。

3、合作探究的方法。通过在分组做实验中同学之间的交互作用,树立团体意识,促进共同提高。

四、说程序

新课程把教学过程看成是师生交往、积极互动、共同发展的过程。根据新课程理念和<

(一)创设情境,引发问题

出示长方体、正方体、圆柱体、圆锥体,问:

1、我们学过了哪些物体体积的计算方法?它们的计算公式各是什么?

2、圆柱的体积计算方法是怎样推导出来的?这节课我们就来学习圆锥的体积。(板书:圆锥的体积)

3、你认为哪一种物体体积的计算方法与圆锥有关?为什么?

4、猜测一下圆柱体积与圆锥体积有什么关系?(板书:v圆柱=3v圆锥?猜测)

(本环节通过创设圆锥体积与谁的体积关系更密切的情景,自然而然导入新课,吸引了学生的注意力,激发学生探索知识的积极性,为新课的学习做了良好的铺垫。)

5、怎样验证自己的猜测?(板书:验证)

(二)合作探索,解决问题

探索是数学的生命线,倡导探索性学习,引导学生经历知识的形成过程,是当前小学数学改革的理念。理解圆锥体积计算公式是本节课的重点,我设计了以下几个环节,让学生通过小组合作,自主探究、动手操作来发现圆锥的体积。

1、出示实验记录单

实验次数

选择一个圆柱和圆锥比较,我们发现

实验结果:它们体积之间的关系

第一次

第二次

第三次

2、师引导学生看懂实验单,按照实验记录单做实验,师巡视指导。

3、让学生介绍实验过程和实验结果。(去掉?)

4、问:做了3次实验,结果为什么不一样?

5、等底等高的圆柱体积和圆锥体积有什么关系?(板书:v圆锥=v圆柱=sh)

6、在这个公式中,s、h分别代表什么?Sh得到什么?为什么要乘?

7、求圆锥的体积要知道什么条件?

师小结:通过猜测、实验验证得出v圆锥=sh

(这样设计,让学生亲身经历知识的形成过程,在与同伴的交流、比较中不断完善优化自己的知识结构,通过自主探究、合作交流,突出重点,突破难点。)

(三)迁移应用,分层提高

练习是掌握知识、形成技能、发展智力的重要环节,根据学生的年龄特点和认知规律,由易到难,由浅入深,力求体现知识的纵横联系,我设计以下几组练习题,请看:

1、尝试解答

出示3组数据,让学生任选一组进行解答。

底面半径4厘米,高6厘米

底面直径4厘米,高5厘米

底面周长25。12厘米,高4厘米

解答完后,叫一名同学板书。

问:为什么都选底面半径和高?

小结:求圆锥的体积,先求出圆锥的底面积,再根据公式求出圆锥的体积。

2、例1:(课件出示教材情景图)在打谷场上,有一个近似于圆锥的小麦堆,底面半径是2米,高是1。5米。你能计算出小麦堆的体积吗?

(生独立列式计算全班交流)

3、判断

(1)圆锥体积等于圆柱体积的。

(2)圆柱体积大于与它等底等高的圆锥体积。

(3)圆锥的高是圆柱的3倍,圆锥体积等于圆柱体积。

4、填空

(1)一个圆柱的体积是6立方米,与它等底等高的圆锥体积是()。

(2)一个圆柱和一个圆锥,底面半径和高都相等,圆锥的体积是18立方米,圆柱的体积是()。

(这个环节的设计,第1、2两题主要是突出本节课的重点,能运用体积公式计算圆锥的体积以及解决一些实际问题;第3、4两题是突破本节课的难点,理解圆柱体积、圆锥体积在等底等高的条件下,体积之间的倍数关系。这些习题的设计,起到巩固提高的作用。体现数学来源于生活,运用于生活。)

(四)总结评价,激励发展

课堂总结是对本节课所学知识进行归纳和总结,以及对学生学习情况的评价,因此我设计了以下几个问题:

1、上了这些课,你有什么收获和体会?

2、你还有什么新的想法?还有什么问题?

(这样不仅能够帮助学生巩固新学的知识,完善知识结构,提高整理知识的能力,还能使学生体验到探索成功的的乐趣,树立学好数学的信心)

五、说板书设计

圆锥的体积

等底等高v圆柱=3v圆锥猜测

验证

v圆锥=v圆柱/3=sh/3

板书设计力求体现知识性和简洁性,使学生一目了然,又起到画龙点睛的作用。

以上仅仅是我对这节课的整体设想和教学预设,在实际的教学过程中,我会十分重视课堂资源的生成情况,不断进行课中反思,及时调控教学过程,以达到最佳的教学效果。

《圆锥体积的说课稿.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式